miércoles, 8 de junio de 2016




TALLER #2

1.-¿QUE ES UNA MAC ADDRESS?
En las redes de computadoras, la dirección MAC (siglas en inglés de media access control; en español "control de acceso al medio") es un identificador de 48 bits (6 bloques hexadecimales) que corresponde de forma única a una tarjeta o dispositivo de red. Se conoce también como dirección física, y es única para cada dispositivo. Está determinada y configurada por el IEEE (los primeros 24 bits) y el fabricante (los últimos 24 bits) utilizando el organizationally unique identifier. La mayoría de los protocolos que trabajan en la capa 2 del modelo OSI usan una de las tres numeraciones manejadas por el IEEE: MAC-48, EUI-48, y EUI-64, las cuales han sido diseñadas para ser identificadores global mente únicos. No todos los protocolos de comunicación usan direcciones MAC, y no todos los protocolos requieren identificadores global mente únicos.
Es también: "La Dirección del Hardware de Control de acceso a soportes de un distribuidor que identifica los equipos, los servidores, los routers u otros dispositivos de red. Al mismo tiempo es un identificador único que está disponible en NIC y otros equipamientos de red. La mayoría de los protocolos de red usan IEEE: MAC-48, EUI-48 y EUI-64, que se diseñan para ser globalmente únicos. Un equipo en la red se puede identificar mediante sus direcciones MAC e IP".1
Las direcciones MAC son únicas a nivel mundial, puesto que son escritas directamente, en forma binaria, en el hardware en su momento de fabricación. Debido a esto, las direcciones MAC son a veces llamadas burned-in addresses, en inglés.
Si nos fijamos en la definición como cada bloque hexadecimal son 8 dígitos binarios (bits), tendríamos:
6 * 8 = 48 bits únicos

2.-¿CUANTAS Y CUALES SON LAS CAPAS DEL MODELO OSI?

el modelo OSI posee 7 capas las cuales son:

1.CAPA FISICA

  • La capa física, la más baja del modelo OSI, se encarga de la transmisión y recepción de una secuencia no estructurada de bits sin procesar a través de un medio físico. Describe las interfaces eléctrica/óptica, mecánica y funcional al medio físico, y lleva las señales hacia el resto de capas superiores. Proporciona:
  • Codificación de datos: modifica el modelo de señal digital sencillo (1 y 0) que utiliza el equipo para acomodar mejor las características del medio físico y para ayudar a la sincronización entre bits y trama. Determina:
  • Qué estado de la señal representa un binario 1
  • Como sabe la estación receptora cuándo empieza un "momento bit"
  • Cómo delimita la estación receptora una trama
  • Anexo al medio físico, con capacidad para varias posibilidades en el medio:
  • ¿Se utilizará un transceptor externo (MAU) para conectar con el medio?
  • ¿Cuántas patillas tienen los conectores y para qué se utiliza cada una de ellas?
  • Técnica de la transmisión: determina si se van a transmitir los bits codificados por señalización de banda base (digital) o de banda ancha (analógica).
  • Transmisión de medio físico: transmite bits como señales eléctricas u ópticas adecuadas para el medio físico y determina:
  • Qué opciones de medios físicos pueden utilizarse
  • Cuántos voltios/db se deben utilizar para representar un estado de señal en particular mediante un medio físico determinado
2.CAPA DE VÍNCULO DE DATOS:

  • La capa de vínculo de datos ofrece una transferencia sin errores de tramas de datos desde un nodo a otro a través de la capa física, permitiendo a las capas por encima asumir virtualmente la transmisión sin errores a través del vínculo. Para ello, la capa de vínculo de datos proporciona: 
  • Establecimiento y finalización de vínculos: establece y finaliza el vínculo lógico entre dos nodos.
  • Control del tráfico de tramas: indica al nodo de transmisión que "dé marcha atrás" cuando no haya ningún búfer de trama disponible.
  • Secuenciación de tramas: transmite y recibe tramas secuencialmente.
  • Confirmación de trama: proporciona/espera confirmaciones de trama. Detecta errores y se recupera de ellos cuando se producen en la capa física mediante la retransmisión de tramas no confirmadas y el control de la recepción de tramas duplicadas.
  • Delimitación de trama: crea y reconoce los límites de la trama.
  • Comprobación de errores de trama: comprueba la integridad de las tramas recibidas.
  • Administración de acceso al medio: determina si el nodo "tiene derecho" a utilizar el medio físico.
3.CAPA DE RED:

  • La capa de red controla el funcionamiento de la subred, decidiendo qué ruta de acceso física deberían tomar los datos en función de las condiciones de la red, la prioridad de servicio y otros factores. Proporciona: 
  • Enrutamiento: enruta tramas entre redes.
  • Control de tráfico de subred: los enrutadores (sistemas intermedios de capa de red) pueden indicar a una estación emisora que "reduzca" su transmisión de tramas cuando el búfer del enrutador se llene.
  • Fragmentación de trama: si determina que el tamaño de la unidad de transmisión máxima (MTU) que sigue en el enrutador es inferior al tamaño de la trama, un enrutador puede fragmentar una trama para la transmisión y volver a ensamblarla en la estación de destino.
  • Asignación de direcciones lógico-físicas: traduce direcciones lógicas, o nombres, en direcciones físicas.
  • Cuentas de uso de subred: dispone de funciones de contabilidad para realizar un seguimiento de las tramas reenviadas por sistemas intermedios de subred con el fin de producir información de facturación.
  • Subred de comunicaciones
  • El software de capa de red debe generar encabezados para que el software de capa de red que reside en los sistemas intermedios de subred pueda reconocerlos y utilizarlos para enrutar datos a la dirección de destino. 
  • Esta capa libera a las capas superiores de la necesidad de tener conocimientos sobre la transmisión de datos y las tecnologías de conmutación intermedias que se utilizan para conectar los sistemas de conmutación. Establece, mantiene y finaliza las conexiones entre las instalaciones de comunicación que intervienen (uno o varios sistemas intermedios en la subred de comunicación). 
  • En la capa de red y las capas inferiores, existen protocolos entre pares entre un nodo y su vecino inmediato, pero es posible que el vecino sea un nodo a través del cual se enrutan datos, no la estación de destino. Las estaciones de origen y de destino pueden estar separadas por muchos sistemas intermedios.
4.CAPA DE TRANSPORTE:

  • La capa de transporte garantiza que los mensajes se entregan sin errores, en secuencia y sin pérdidas o duplicaciones. Libera a los protocolos de capas superiores de cualquier cuestión relacionada con la transferencia de datos entre ellos y sus pares. 
  • El tamaño y la complejidad de un protocolo de transporte depende del tipo de servicio que pueda obtener de la capa de transporte. Para tener una capa de transporte confiable con una capacidad de circuito virtual, se requiere una mínima capa de transporte. Si la capa de red no es confiable o solo admite datagramas, el protocolo de transporte debería incluir detección y recuperación de errores extensivos. 
  • La capa de transporte proporciona:
  • Segmentación de mensajes: acepta un mensaje de la capa (de sesión) que tiene por encima, lo divide en unidades más pequeñas (si no es aún lo suficientemente pequeño) y transmite las unidades más pequeñas a la capa de red. La capa de transporte en la estación de destino vuelve a ensamblar el mensaje.
  • Confirmación de mensaje: proporciona una entrega de mensajes confiable de extremo a extremo con confirmaciones.
  • Control del tráfico de mensajes: indica a la estación de transmisión que "dé marcha atrás" cuando no haya ningún búfer de mensaje disponible.
  • Multiplexación de sesión: multiplexa varias secuencias de mensajes, o sesiones, en un vínculo lógico y realiza un seguimiento de qué mensajes pertenecen a qué sesiones (consulte la capa de sesiones).
  • Normalmente, la capa de transporte puede aceptar mensajes relativamente grandes, pero existen estrictas limitaciones de tamaño para los mensajes impuestas por la capa de red (o inferior). Como consecuencia, la capa de transporte debe dividir los mensajes en unidades más pequeñas, o tramas, anteponiendo un encabezado a cada una de ellas. 
  • Así pues, la información del encabezado de la capa de transporte debe incluir información de control, como marcadores de inicio y fin de mensajes, para permitir a la capa de transporte del otro extremo reconocer los límites del mensaje. Además, si las capas inferiores no mantienen la secuencia, el encabezado de transporte debe contener información de secuencias para permitir a la capa de transporte en el extremo receptor recolocar las piezas en el orden correcto antes de enviar el mensaje recibido a la capa superior.
  • Capas de un extremo a otro
  • A diferencia de las capas inferiores de "subred" cuyo protocolo se encuentra entre nodos inmediatamente adyacentes, la capa de transporte y las capas superiores son verdaderas capas de "origen a destino" o de un extremo a otro, y no les atañen los detalles de la instalación de comunicaciones subyacente. El software de capa de transporte (y el software superior) en la estación de origen lleva una conversación con software similar en la estación de destino utilizando encabezados de mensajes y mensajes de control.
5.CAPA DE SESIÓN:

  • La capa de sesión permite el establecimiento de sesiones entre procesos que se ejecutan en diferentes estaciones. Proporciona: 
  • Establecimiento, mantenimiento y finalización de sesiones: permite que dos procesos de aplicación en diferentes equipos establezcan, utilicen y finalicen una conexión, que se denomina sesión.
  • Soporte de sesión: realiza las funciones que permiten a estos procesos comunicarse a través de una red, ejecutando la seguridad, el reconocimiento de nombres, el registro, etc.
6. CAPA DE PRESENTACIÓN:

  • La capa de presentación da formato a los datos que deberán presentarse en la capa de aplicación. Se puede decir que es el traductor de la red. Esta capa puede traducir datos de un formato utilizado por la capa de la aplicación a un formato común en la estación emisora y, a continuación, traducir el formato común a un formato conocido por la capa de la aplicación en la estación receptora. 
  • La capa de presentación proporciona: 
  • Conversión de código de caracteres: por ejemplo, de ASCII a EBCDIC.
  • Conversión de datos: orden de bits, CR-CR/LF, punto flotante entre enteros, etc.
  • Compresión de datos: reduce el número de bits que es necesario transmitir en la red.
  • Cifrado de datos: cifra los datos por motivos de seguridad. Por ejemplo, cifrado de contraseñas.

7.CAPA DE APLICACIÓN:

El nivel de aplicación actúa como ventana para los usuarios y los procesos de aplicaciones para tener acceso a servicios de red. Esta capa contiene varias funciones que se utilizan con frecuencia: 

  • Uso compartido de recursos y redirección de dispositivos
  • Acceso a archivos remotos
  • Acceso a la impresora remota
  • Comunicación entre procesos
  • Administración de la red
  • Servicios de directorio
  • Mensajería electrónica (como correo)
  • Terminales virtuales de red.


3.CAPAS DEL MODELO TCP/IP:

El objetivo de un sistema en capas es dividir el problema en diferentes partes (las capas), de acuerdo con su nivel de abstracción.
Cada capa del modelo se comunica con un nivel adyacente (superior o inferior). Por lo tanto, cada capa utiliza los servicios de las capas inferiores y se los proporciona a la capa superior.
El modelo TCP/IP, influenciado por el modelo OSI, también utiliza el enfoque modular (utiliza módulos o capas), pero sólo contiene cuatro:
  1. Capa de acceso a la red
  2. Capa de internet
  3. Capa de transporte
  4. Capa de aplicación
Como puede apreciarse, las capas del modelo TCP/IP tienen tareas mucho más diversas que las del modelo OSI, considerando que ciertas capas del modelo TCP/IP se corresponden con varios niveles del modelo OSI.
Las funciones de las diferentes capas son las siguientes:
  1. Capa de acceso a la red: especifica la forma en la que los datos deben enrutarse, sea cual sea el tipo de red utilizado;
  2. Capa de Internet: es responsable de proporcionar el paquete de datos (datagrama);
  3. Capa de transporte: brinda los datos de enrutamiento, junto con los mecanismos que permiten conocer el estado de la transmisión;
  4. Capa de aplicación: incorpora aplicaciones de red estándar (Telnet, SMTP, FTP, etc.).


.

4.CUAL ES LA CAPA QUE ENRUTA LOS PÁQUETES DE ACUERDO A LAS DIRECCIONES DE RED LOGICAS?

  • CAPA DE RED: la funcion de La capa 3 ó capa de red es la encargada de permitir que la información fluya por redes diferentes.
5.LA FIBRA OPTICA SE RELACIONA CON LA CAPA OSI:

-Se relaciona con la capa fisica del modelo OSI;Se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico (cable coaxial, cable de par trenzado, fibra óptica, radio, microondas) y la forma en que se transmite la información.

6.TCP ES UN PROTOCOLO DE LA CAPA:

-TCP es un protocolo de la capa de transporte.TCP: Este protocolo garantiza que los datos serán entregados en su destino sin errores y en el mismo orden en que se transmitieron. También proporciona un mecanismo para distinguir distintas aplicaciones dentro de una misma máquina, a través del concepto de puerto

7. LA FIBRA OPTICA SE RELACIONA CON LA CAPA OSI:

-Se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico (cable coaxial, cable de par trenzado, fibra óptica, radio, microondas) y la forma en que se transmite la información.

8.UDP ES UN PROTOCOLO DE LA CAPA:

-UDP es un protocolo de la capa de transporte que  Permite el envío de datagramas a través de la red sin que se haya establecido previamente una conexión, ya que el propio datagrama incorpora suficiente información de direccionamiento en su cabecera.

9.CUANDO SE HABLA DE PAR TRENZADO SE HABLA DE CAPA:

-Se habla de la capa de red.

10.EL TERMINO TRAMA HACE REFERENCIA A LA CAPA:

-Hace referencia a la capa aplicacion.

11.DISPOSITVO CAPA 1:

-Cable coaxial

12.DISPÓSITIVO CAPA 2:

-Switch

13.DEFINE MULTICAST:

-Multicast es un método de envío simultáneo de paquetes (a nivel de IP) que tan sólo serán recibidos por un determinado grupo de receptores, que están interesados en los mismos.

  • Cómo funciona multicast

Para que el equipo reciba paquetes, antes deben de haberse subscrito a ese grupo, haciéndolo saber mediante un mensaje de tipo IGMP (este tipo de mensaje no solo sirve para que un equipo se apunte para recibir paquetes multicast de una dirección, sino también sirve para que un router sepa que en su interfaz tiene a un equipo interesado en recibir paquetes de una determinada dirección multicast). Cuando el router sepa esa información y le lleguen paquetes con la dirección de destino a la que el host estaba interesado, el router los redigirá y los enviará al host.
Imagen de una comunicación multicast





14.DEFINE BROADCAST:

-El broadcast es la difusión masiva de información o paquetes de datos a través de redes informáticas. El término se utiliza en la informática y en las telecomunicaciones. Según la materia en que se emplee varía un poco en su definición.








15.DEFINE UNICAST:

-Unicast es la forma más sencilla, ya que la transmisión se realiza solo entre dos nodos, únicamente hay un nodo emisor y un nodo receptor. Un ejemplo de transmisión unicast sería una llamada telefónica, ya que solo hay dos personas que se están comunicando y nadie más participa, ya sea como emisor o como receptor.




16.DOMINIO DE COLISION:

-Un dominio de colisión es un segmento físico de una red de computadores donde es posible que las tramas puedan "colisionar" (interferir) con otros. Estas colisiones se dan particularmente en el protocolo de red Ethernet.





17. NIC:

- Normas Internacionales de Contabilidad

Desde el año 2005, las cuentas anuales consolidadas que elaboran las sociedades que tienen valores admitidos a negociación en un mercado regulado; se formulan conlas normas internacionales de contabilidad adoptadas por la Unión Europea. El resto de las empresas, sin embargo, seguía aplicando la normativa española.
El objetivo de la reforma contable, que desarrollan los dos Reales Decretos aprobados, es evitar la dualidad existente y conseguir una lectura homogénea de los estados financieros de las empresas españolas. Aumenta así la transparencia y la comparabilidad de las cuentas de nuestras sociedades con las del resto de la Unión Europea.
La reforma se ha llevado a cabo de manera que los cambios en la legislación mercantil no tengan un coste fiscal en las empresas y para ello se han efectuado las modificaciones pertinentes en el Impuesto sobre Sociedades. La nueva regulación contable tampoco implica cambios en los regímenes fiscales especiales para las pymes (declaración por módulos y estimación directa).

18.ALGUNOS PROTOCOLOS DE LA CAPA DE RED:

  • IP : Internet Protocol (enespañol 'Protocolo de Internet') o IP es un protocolo de comunicación de datos digitales clasificado funcionalmente en la capa de red según el modelo internacional OSI.

  • Su función principal es el uso bidireccional en origen o destino de comunicación para transmitir datos mediante un protocolo no orientado a conexión que transfiere paquetes conmutados a través de distintas redes físicas previamente enlazadas según la norma OSI de enlace de datos.
  • IPv4:
El Protocolo de Internet versión 4, en inglés: Internet Protocol version 4(IPv4), es la cuarta versión del Internet Protocol (IP), y la primera en ser implementada a gran escala. Definida en el RFC 791. IPv4 usa direcciones de 32 bits, limitándola a  = 4 294 967 296 direcciones únicas, muchas de las cuales están dedicadas a redes locales (LAN).1 Por el crecimiento enorme que ha tenido Internet (mucho más de lo que esperaba, cuando se diseñó IPv4), combinado con el hecho de que hay desperdicio de direcciones en muchos casos (ver abajo), ya hace varios años se vio que escaseaban las direcciones IPv4.
Esta limitación ayudó a estimular el impulso hacia IPv6, que está actualmente en las primeras fases de implantación, y se espera que termine reemplazando a IPv4.
Las direcciones disponibles en la reserva global de IANA pertenecientes al protocolo IPv4 se agotaron oficialmente el lunes 31 de enero de 2011.2 Los Registros Regionales de Internet deben, desde ahora, manejarse con sus propias reservas, que se estima, alcanzaran hasta el 2020.

  • IPv6:
El Protocolo de Internet versión 6, en inglés: Internet Protocol version 6(IPv6), es una versión del Internet Protocol (IP), definida en el RFC 2460y diseñada para reemplazar a Internet Protocol version 4 (IPv4) RFC 791, que actualmente está implementado en la gran mayoría de dispositivos que acceden a Internet.
Diseñado por Steve Deering de Xerox PARC y Craig Mudge, IPv6 sujeto a todas las normativas que fuera configurado –está destinado a sustituir aIPv4, cuyo límite en el número de direcciones de red admisibles está empezando a restringir el crecimiento de Internet y su uso, especialmente en China, India, y otros países asiáticos densamente poblados–. El nuevo estándar mejorará el servicio globalmente; por ejemplo, proporcionará a futuras celdas telefónicas y dispositivos móviles sus direcciones propias y permanentes.
  • IPsec:

IPsec (abreviatura de Internet Protocol security) es un conjunto de protocolos cuya función es asegurar las comunicaciones sobre el Protocolo de Internet (IP) autenticando y/o cifrando cada paquete IP en un flujo de datos. IPsec también incluye protocolos para el establecimiento de claves de cifrado.
  • OSPF:

Open Shortest Path First (OSPF), camino más corto primero, es un protocolo de red para encaminamiento jerárquico de pasarela interior o Interior Gateway Protocol (IGP), que usa el algoritmo SmoothWall Dijkstra enlace-estado (Link State Algorithm, LSE) para calcular la ruta idónea entre dos nodos cualesquiera de un sistema autónomo.Su medida de métrica se denomina cost, y tiene en cuenta diversos parámetros tales como el ancho de banda y la congestión de los enlaces. OSPF construye además una base de datos enlace-estado (Link-State Database, LSDB) idéntica en todos los routers de la zona.
  • IS-IS:
IS-IS (del inglés Intermediate system to intermediate system) es un protocolo de estado de enlace, o SPF (shortest path first), por lo cual, básicamente maneja una especie de mapa con el que se fabrica a medida que converge la red. Es también un protocolo de Gateway interior (IGP). Este protocolo está descrito por el RFC 1142. En este se refiere a que IS-IS fue creado con el fin de crear un acompañamiento a CNS (Protocol for providing the Connectionless-mode Network Service).

  • RIP:
El Protocolo de Información de Encaminamiento, Routing Information Protocol (RIP), es un protocolo de puerta de enlace interna o interior (Interior Gateway Protocol, IGP) utilizado por los routers o encaminadores para intercambiar información acerca de redes del Internet Protocol (IP) a las que se encuentran conectados. Su algoritmo de encaminamiento está basado en el vector de distancia, ya que calcula la métrica o ruta más corta posible hasta el destino a partir del número de "saltos" o equipos intermedios que los paquetes IP deben atravesar. El límite máximo de saltos en RIP es de 15, de forma que al llegar a 16 se considera una ruta como inalcanzable o no deseable. A diferencia de otros protocolos, RIP es un protocolo libre es decir que puede ser usado por diferentes routers y no únicamente por un solo propietario con uno como es el caso de EIGRP que es de Cisco Systems.

  • ICMP:
El Protocolo de Mensajes de Control de Internet o ICMP (por sus siglas en inglés de Internet Control Message Protocol) es el sub protocolo de control y notificación de errores del Protocolo de Internet (IP). Como tal, se usa para enviar mensajes de error, indicando por ejemplo que un servicio determinado no está disponible o que un router o host no puede ser localizado. También puede ser utilizado para transmitir mensajes ICMP Query.

  • ICMPv6:
Protocolo de Mensajes de Control de Internet Version 6 (ICMPv6 o ICMP para IPv6) es una nueva versión de ICMP y es una parte importante de la arquitectura IPv6 que debe estar completamente soportada por todas las implementaciones y nodos IPv6. ICMPv6 combina funciones que anteriormente estaban subdivididas en varias partes de diferentes protocolos tales como ICMP, IGMP o ARP y además introduce algunas simplificaciones eliminando tipos de mensajes obsoletos que estaban en desuso actualmente.

  • IGMP:
El protocolo de red IGMP se utiliza para intercambiar información acerca del estado de pertenencia entre enrutadores IP que admiten la multidifusión y miembros de grupos de multidifusión. Los hosts miembros individuales informan acerca de la pertenencia de hosts al grupo de multidifusión y los enrutadores de multidifusión sondean periódicamente el estado de la pertenencia.

  • DHCP:
DHCP (siglas en inglés de Dynamic Host Configuration Protocol, en español «protocolo de configuración dinámica de host») es un servidor que usa protocolo de red de tipo cliente/servidor en el que generalmente un servidor posee una lista de direcciones IP dinámicas y las va asignando a los clientes conforme éstas van quedando libres, sabiendo en todo momento quién ha estado en posesión de esa IP, cuánto tiempo la ha tenido y a quién se la ha asignado después. Así los clientes de una red IP pueden conseguir sus parámetros de configuración automáticamente. Este protocolo se publicó en octubre de 1993, y su implementación actual está en la RFC 2131. Para DHCPv6 se publica el RFC 3315.

19. DATAGRAMA:

Un datagrama es un paquete de datos que constituye el mínimo bloque de información en una red de conmutación por datagramas, la cual es uno de los dos tipos de protocolo de comunicación por conmutación de paquetes usados para encaminar por rutas diversas dichas unidades de información entre nodos de una red, por lo que se dice que no está orientado a conexión. La alternativa a esta conmutación de paquetes es el circuito virtual, orientado a conexión.

20.TRAMA DE RED:
En redes una trama es una unidad de envío de datos. Es una serie sucesiva de bits, organizados en forma cíclica, que transportan información y que permiten en la recepción extraer esta información. Viene a ser el equivalente de paquete de datos o Paquete de red, en el Nivel de enlace de datos del modelo OSI.
Normalmente una trama constará de cabecera, datos y cola. En la cola suele estar algún chequeo de errores. En la cabecera habrá campos de control de protocolo. La parte de datos es la que quiera transmitir en nivel de comunicación superior, típicamente el Nivel de red.
Para delimitar una trama se pueden emplear cuatro métodos, el tracker:
  1. por conteo de caracteres: al principio de la trama se pone el número de bytes que representa el principio y fin de las tramas. Habitualmente se emplean STX (Start of Transmission: ASCII #2) para empezar y ETX (End of Transmission: ASCII #3) para terminar. Si se quieren transmitir datos arbitrarios se recurre a secuencias de escape para distinguir los datos de los caracteres de control.
  2. por secuencias de bits: en comunicaciones orientadas a bit, se puede emplear una secuencia de bits para indicar el principio y fin de una trama. Se suele emplear el "guion", 01111110, en transmisión siempre que aparezcan cinco unos seguidos se rellena con un cero; en recepción siempre que tras cinco unos aparezca un cero se elimina.
  3. por violación del nivel físico: se trata de introducir una señal, o nivel de señal, que no se corresponda ni con un "1" ni con un "0". Por ejemplo si la codificación física es bipolar se puede usar el nivel de 0 voltios, o en Codificación Manchester se puede tener la señal a nivel alto o bajo durante todo el tiempo de bit (evitando la transición de niveles característica de este sistema).
  4. El estándar de facto evolucionó hacia varios estándares oficiales, como son:
    1. FR Forum (Asociación de Fabricantes): Cisco, DEC, Stratacom y Nortel.
    2. ANSI: fuente de normativas Frame-Relay.
    3. ITU-T: también dispone de normativa técnica de la tecnología Frame-Relay.
























No hay comentarios.:

Publicar un comentario